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ABSTRACT. Several statistical properties of elliptic curves over Q have been deduced
from the average rank of their Selmer groups. In papers by Bhargava, Shankar, and
others, these average ranks have been computed by associating the Selmer groups with
sets of orbits of coregular representations. In this paper, we review these methods and
focus in particular on the computation of the average rank of elliptic curves ordered by
a height function on the coefficients, based on the parametrization of the 2-Selmer group
by orbits of binary quartic forms under the natural action by PGL2Z. We also discuss
the parametrization of the 3-Selmer group by orbits of ternary cubic forms under the
natural action by GL3(Z), which leads to analogous results on the average size of the
3-Selmer group over all elliptic curves.

1. Introduction.

Let E be an elliptic curve defined over Q. The Mordell-Weil Theorem states that the group of rational points
E(Q) is a finitely generated abelian group. This implies that we can study the structure of this group E(Q)
by studying the rank r := rkE(Q) and the torsion subgroup E(Q)tors ⊆ E(Q).

The possibilities for the torsion subgroup of the group of rational points of an elliptic curve are quite
restricted over the base field Q. Mazur [12] proved that the torsion subgroup of any elliptic curve over Q
is either of the form Z/kZ where 1 ≤ k ≤ 12 (but k ̸= 11) or of the form Z/kZ × Z/2Z where k = 2, 3, or
4. For any specific elliptic curve E one can determine with little effort which of these groups is the torsion
subgroup E(Q)tors using local conditions, as the reduction map E(Q)tors → Ẽ(Fp) modulo p turns out to
be an injection for any prime p ≥ 11 at which E has good reduction (see Silverman [13], §VII.3).

The complexity in determining the structure of the group of rational points E(Q) thus lies in determining
the rank r, and in finding generators for the Zr summand of E(Q). The rank of elliptic curves is not known
to be bounded in general, except in specific families [13]. However, there is a general technique known as
n-descent that can be used to calculate the rank of any specific elliptic curve. Following [13], §X.4, if we

consider the short exact sequence 0 → E(Q)[n] ↪→ E(Q)
[n]−−→ E(Q) → 0 of Gal(Q/Q)-modules, the long

exact sequence in cohomology shows that the sequence

0 −→ coker([n] : E(Q) → E(Q)) = E(Q)/nE(Q) −→ H1(Q/Q, E[n])

−→ H1(Q/Q, E)[n] = ker(H1(Q/Q, E)
[n]−−→ H1(Q/Q, E)) −→ 0

is exact. So, the problem of determining the rank of E is now reduced to the problem of determining
E(Q)/nE(Q) = ker(H1(Q/Q, E[n]) → H1(Q/Q, E)[n]), given knowledge of the torsion subgroup E(Q)tors.

The computation of this kernel can be localized to give an upper bound on the rank of E/Q. In particular,
we define the n-Selmer group to be the kernel

SelnE/Q := ker

H1(Q/Q, E[n]) →
∏

ν place of Q
H1(Qν/Qν , E(Qν))


so that there is an inclusion E(Q)/nE(Q) ↪→ SelnE/Q.
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Although there is much difficulty in determining the ranks of elliptic curves, it turns out that the average
rank of all elliptic curves is bounded. More specifically, the following theorem holds.

Theorem 1. [1] (Bhargava, Shankar, 2015) Consider the elliptic curves over Q with equations y2 = x3 +
Ax+B for A,B ∈ Z such that p4|A and p6|B do not both hold for any prime p, ordered by the height function

H(A,B) = max{4|A|3 , 27B2}.
(a) The average size of Sel2E/Q is 3.
(b) The average size of dimF2

Sel2E/Q is at most 3/2.
(c) The average value of rkE(Q) is at most 3/2.

Similarly, the average size of Sel3E/Q is known, and it turns out as a (somewhat indirect) consequence
that rkE(Q) = 0, that is, E(Q) is finite, with positive probability.

Theorem 2. [2] (Bhargava, Shankar, 2015) Consider the elliptic curves over Q with equations y2 = x3 +
Ax+B for A,B ∈ Z such that p4|A and p6|B do not both hold for any prime p, ordered as before.

(a) The average size of Sel3E/Q is 4.
(b) The average size of dimF3

Sel3E/Q is at most 7/6.
(c) The average value of rkE(Q) is at most 7/6.
(d) The probability that a randomly chosen elliptic curve E has rank 0 is positive.

We note that there are similar results for the 4-Selmer and 5-Selmer groups [3, 4], the latter of which
results in stricter upper bounds on the average rank of elliptic curves.

How are results on the average size of the n-Selmer group proved? The key ingredient in the proof is a
parametrization by what is known as a coregular representation [1], that is, a parametrization of the n-Selmer
group by a certain class of orbits of a vector space V over Q under the action of a matrix group with the
property that the set of polynomials on V fixed by G forms a polynomial ring (isomorphic to Q[x1, x2, . . . , xℓ]
for some ℓ). For the 2-Selmer group, it turns out that the correct group action is the action of PGL2Q on
the vector space of binary quartic forms over Q, on which we will elaborate in the subsequent sections.

2. Selmer Groups and Soluble Coverings.

In this section we describe an alternative description of the elements of the n-Selmer group of an elliptic curve
E, in terms of what are known as the locally soluble n-coverings of E. Following the notational conventions
of [13], for any field K and any curve C/K, we will let K(C) denote the function field of C over K.

As defined by Birch and Swinnerton-Dyer [5], for any integer n ≥ 2, an n-covering of an elliptic curve

E/Q consists of a curve C/Q and an isomorphism φC : C
∼=−→ E over Q such that [n] ◦ φC is a morphism

(of degree n2) defined over Q. We say that two n-coverings of E are isomorphic if they only differ by the
addition of an n-torsion point of E. More precisely, (C,φC) and (C ′, φC′) are isomorphic n-coverings if
there is an isomorphism ψ : C → C ′ defined over Q and a point P ∈ E[n] such that P + φC = φC′ ◦ ψ.
The following result, adapted from Silverman [13], Theorem X.2.2, and utilized by Bhargava and Shankar
[1, 2, 3, 4], relates n-coverings of elliptic curves to cocycles in the Galois cohomology of E[n].

Theorem 3. [1, 13] There exists a canonical bijection between the set of n-coverings of E up to isomorphism
and H1(Q/Q, E[n]), which sends a covering (C,φC) to the cocycle ξC with ξC(σ) = σ(φC)(Q)− φC(Q) for
all σ ∈ Gal(Q/Q), where Q ∈ C(Q) is any point.

Proof. We follow the proof method of Silverman [13], Theorem X.2.2. First, to show that ξC is independent
of the choice of Q ∈ C(Q) (and is valued in E[n]), note that the morphism σ(φC)− φC : C → E has image
contained in E[n] as [n]◦φC is a morphism defined over Q and [n]◦(σ(φC)−φC) = σ([n]◦φC)−[n]◦φC = O is
the constant map sending C to the identity O ∈ E. As σ(φC)−φC is a morphism of (irreducible) projective
varieties with finite image (E[n] has n2 elements), it must be constant. The fact that the cochain ξC
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associated to a covering (C,φC) is indeed a cocycle follows from the fact that

ξC(στ) = (σ(φC)(Q)− φC(Q)) + σ(τ(φC)(σ
−1(Q))− φC(σ

−1(Q)))

= ξC(σ) + σ(ξC(τ)),

for any σ, τ ∈ Gal(Q/Q).
Next, to show that the correspondence is well-defined, we must show that isomorphic n-coverings (C,φC)

and (C ′, φC′) of E give rise to the same element [ξC ] = [ξC′ ] ∈ H1(Q/Q, E[n]). If ψ : C → C ′ is an
isomorphism over Q and P ∈ E[n] such that P + φC = φC′ ◦ ψ,

ξC′(σ)− ξC(σ) = (σ(φC′ ◦ ψ))(Q)− (φC′ ◦ ψ)(Q)− (σ(φC)(Q)− φC(Q)) = σ(P )− P,

which is a coboundary for E[n], as desired.
To see that the correspondence is injective, one notes that if for two n-coverings (C,φC) and (C ′, φC′ ,

ξC′(σ) − ξC(σ) = σ(P ) − P for all σ ∈ Gal(Q/Q) and some P ∈ E[n], the map ψ : C → C ′ with ψ(Q) =
φ−1
C′ (P + φC(Q)) is an isomorphism of varieties over Q which, together with the point P ∈ E[n], forms an

isomorphism of n-coverings. (To check that ψ is defined over Q, we may use the relation ξC′(σ)− ξC(σ) =
σ(P )− P to find that σ(P ) = (σ(φC′))(ψ(Q))− (σ(φC))(Q) for any Q ∈ C(Q) and solve for σ−1(ψ(Q)).)

Finally, we show that the correspondence is surjective. To each cocycle we will exhibit an n-covering of
E mapping to that cocycle by constructing its function field. Suppose that ξ ∈ H1(Q/Q, E[n]). Let Q(E)ξ
denote the field Q(E) endowed with the twisted Galois action σ ⋆ f = σ(f) ◦ Tξ(σ), where TP denotes the
translation-by-P isomorphism of E. Then we may choose a curve C/Q such that the function field Q(C)

of C over Q is the fixed field K := (Q(E)ξ)
Gal(Q/Q), with an isomorphism φC : C → E corresponding to

the function field isomorphism Q(E)
∼=−→ Q(E)ξ. Such a curve C/Q exists as K is an extension of Q of

transcendence degree 1 containing no nontrivial algebraic extensions of Q (see for example [13], Remark
II.2.5). The pair (C,φC) forms an n-covering of E as [n] ◦φC corresponds to the homomorphism of function

fields Q(E)
◦[n]−−→ Q(E)

∼=−→ Q(E)ξ, which restricts to a homomorphism Q(E) → K (so that [n]◦φC is defined
over Q) since [n]ξ(σ) = O and hence σ ⋆ (f ◦ [n]) = σ(f)◦ ([n]◦Tξ(σ)) = σ(f)◦ [n] = f ◦ [n] for any f ∈ Q(E).
It is straightforward to check that (C,φC) indeed does correspond to the cocycle ξ, concluding the proof.

To describe elements of the n-Selmer group of E, we must determine the inverse image of SelnE/Q
under the bijection of Theorem 3. In order to do so, as in [1], we will make the following definitions. A
soluble n-covering of E is an n-covering (C,φC) such that C(Q) ̸= ∅. A locally soluble n-covering of E is an
n-covering (C,φC) satisfying the local conditions C(Qν) ̸= ∅ for all places ν of Q.

Then if C has a rational point Q, ξC(σ) = σ(ϕC(Q)) − ϕC(Q) for all σ ∈ Gal(Q/Q), and [ξC ] = 0 ∈
H1(Q/Q, E) as it is the coboundary of ϕC(Q) ∈ E(Q). Similarly, if C has a point Q defined over Qν for some
place ν of Q, we find that ξC has trivial image in H1(Gal(Qν/Qν), E(Qν)) (it is the coboundary of the point
φC(Q) ∈ E(Q) ⊆ E(Qν)). Moreover, the converse to both of these statements holds: If ξC has trivial image
in H1(K/K,E(K)) (for K = Q or Qν for some place ν of Q), then it is the coboundary of some P ∈ E(K),
and we can verify that φ−1

C (P ) ∈ C(K) as σ(P )− P = σ(φC)(φ
−1
C (P ))− P for all σ ∈ Gal(K/K). We may

summarize these observations using the exact sequences in Section 1 in the following corollary.

Corollary 4. [1] The bijection of Theorem 3 induces a canonical bijection between the set of soluble n-
coverings of E up to isomorphism and E(Q)/nE(Q), and a canonical bijection between the set of locally
soluble n-coverings of E up to isomorphism and SelnE/Q.

In order to construct parametrizations for 2-Selmer groups in terms of orbits of a vector space under
the action of a matrix group, we will need the following result due to Cassels [6] on the existence of certain
divisors on n-coverings, which will prove in full generality. As we will see in Section 3, this result will enable
us to use the Riemann-Roch Theorem to find a polynomial relation between appropriately chosen linearly
independent functions in the function field of C. This theorem can also be used to construct the similar
parametrization of 3-Selmer groups by orbits of ternary cubic forms.
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Theorem 5. [6] (Cassels, 1962) If (C,φC) is a locally soluble n-covering of E, there is a positive divisor D
on C, defined over Q, such that degD = n.

Proof. We follow the proof method in [6]. As PicE(Q) ∼= E(Q) via the map [P − O] 7→ P , we see that if
P, P ′ ∈ E[n], nP −nP ′ = n(P −O)−n(P ′−O) is linearly equivalent to the divisor 0, so that nP and nP ′ are
linearly equivalent divisors. Thus, if we define the divisor D′ := nQ for Q ∈ C(Q) such that [n]φC(Q) = O,
the linear equivalence class of D′ does not depend on the choice of Q, and D′ is linearly equivalent to its
Galois conjugates. In other words, for each σ ∈ Gal(Q/Q), we may choose a function fσ ∈ Q(C) for which
σ(D′) −D′ = divfσ. As degD′ = n, it suffices to show that D′ is linearly equivalent to a divisor D on C
defined over Q.

To accomplish this, we will construct a function g ∈ Q(C) such that divσ(g)/g = σ(D′) − D′ for all
σ ∈ Gal(Q/Q), so that σ(D′ − divg) = D′ − divg. For such a function g, we see that fσ and σ(g)/g

have the same divisor, from which we can conclude that fσ/(σ(g)/g) would be a constant in Q×
for all

σ ∈ Gal(Q/Q). In order to construct the function g, we will first construct a cochain ξ ∈ C1(Q/Q,Q×
) such

that σ 7→ fσ/ξ(σ) is a cocycle, and then show that σ 7→ fσ/ξ(σ) is also a coboundary.
First, we will use the Brauer-Hasse-Noether theorem (see for example [11], Theorem 14.11) – in particular,

that the map H2(Q/Q,Q×
) →

∏
ν H

2(Qν/Qν ,Qν
×
) is an injection – to make use of the condition that

(C,φC) is locally soluble. For any σ, τ ∈ Gal(Q/Q), let α(σ, τ) := σ(fτ )fσ/fστ . Then

divα(σ, τ) = σ(τ(D′)−D′) + (σ(D′)−D′)− (στ(D′)−D′) = 0,

hence α(σ, τ) corresponds to a non-surjective morphism C → P1 (as it has no zeroes or poles), so is a constant

in Q×
. By a quick calculation, we can show that α is a cocycle and consequently [α] ∈ H2(Q/Q,Q×

). But,
as (C,φC) is locally soluble, we may choose a point Pν ∈ C(Qν) for any place ν of Q. Since σ(P ) = P for

all σ ∈ Gal(Qν/Qν), we find that α(σ, τ) = σ(fτ (Pν))fσ(Pν)/fστ (Pν) ∈ Z2(Qν/Qν ,Qν
×
) is the coboundary

of the cochain σ 7→ fσ(Pν), and [α] is locally trivial. Thus, by the Brauer-Hasse-Noether theorem, α is the

coboundary of some cochain ξ ∈ C1(Q/Q,Q×
).

Next, by a generalization of Hilbert’s Theorem 90, H1(Q/Q,Q(C)×) = 1 (this can be proved in the same
manner as Hilbert’s Theorem 90). Then as ξ and the cochain σ 7→ fσ have the same coboundary, the cochain
σ 7→ fσ/ξ(σ) is a cocycle. By the generalization of Hilbert’s Theorem 90 mentioned above, σ 7→ fσ/ξ(σ)
is the coboundary of some function g ∈ Q(C). It follows from the discussion earlier in the proof that the
divisor D := D′ − divg is the desired divisor of degree n defined over Q.

3. 2-Selmer Groups and Binary Quartic Forms.

In this section we will describe a correspondence due to Birch and Swinnerton-Dyer [5], and made explicit by
Cremona [14], between the 2-Selmer group and a class of orbits of an action on the space of binary quartic
forms over Q by the group PGL2Q.

First, let us describe the action and its invariant polynomials, following [1, 5, 7, 14]. Let

V (Q) := {ax4 + bx3y + cx2y2 + dxy3 + ey4 | a, b, c, d, e ∈ Q}

be the 5-dimensional vector space of binary quartic forms over Q. For any M ∈ PGL2Q and any f ∈ V (Q),
we define Mf(X,Y ) := (detM)−2f(M⊤(X,Y )). We can make analogous definitions for V (Z) and V (R).
By making the action explicit in terms of the coefficients of the quartic form, it can be easily checked that
the polynomials

I(f) := 12ae− 3bd+ c2

J(f) := 72ace+ 9bcd− 27ad2 − 27b2e− 2c3

on V (Q), for f = ax4 + bx3y + cx2y2 + dxy3 + ey4, are invariant under the action by PGL2Q. With more
elaborate computations due to Cremona [7], it can be shown that to any binary quartic form f ∈ V (Q)
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with invariants I and J we can associate a projective curve Cf isomorphic to the elliptic curve Y 2Z =
X3 − IXZ2/3− JZ3/27.

Proposition 6. [7] (Cremona, 2001) Let f = ax4 + bx3y + cx2y2 + dxy3 + ey4 be a binary quartic form in
V (Q), and let Cf be a projective curve with affine part defined by the equation y2 = f(x, 1). (We will define Cf

as the blow-up of the (singular) projective curve Y 2Z2 = f(X,Y ) in P2 at the point [X : Y : Z] = [0 : 0 : 1].)
Then there is an isomorphism φCf

, defined over Q, from Cf to the elliptic curve E defined by the equation
Y 2Z = X3− I(f)XZ2/3−J(f)Z3/27, making (Cf , φCf

) into a 2-covering of E, that is, where [2]◦φCf
is a

morphism of degree 4 defined over Q. This isomorphism can be chosen to have the property that the inverse
image of the identity O ∈ E is the set of points in Cf with y-coordinate 0.

Now, we must consider the converse – for any given elliptic curve E/Q, is every locally soluble 2-covering
of the form prescribed by Lemma 6? This question turns out to have a positive answer, and an equation of
the desired form for any locally soluble 2-covering may be obtained by applying the Riemann-Roch theorem
to the divisor of Theorem 5, as described below.

Theorem 7. [5] (Birch, Swinnerton-Dyer, 1963) Let E be an elliptic curve over Q and let (C,φC) be a
locally soluble 2-covering of E/Q. Then there exists a binary quartic form f(x, y) ∈ V (Q) such that C ∼= Cf

over Q, where Cf is the projective curve defined in Proposition 6.

Proof. We follow the proof method in [5]. As (c, φC) is a locally soluble 2-covering of E, we may apply
Theorem 5 to construct a divisor D on C defined over Q and of degree 2. Following the notation in [13],
§II.5, for any divisor D0 on C, let L(D0) be the Q-vector space of all functions f ∈ Q(C) whose divisor is at
least −D0, and let ℓ(D0) := dimQ L(D0). The Riemann-Roch Theorem then implies that ℓ(nD) = 2n for all

n ∈ N, for C has genus 1, and that ℓ(D̃) = 1 for all divisors D̃ of degree 1. In addition (see [13], Proposition

II.5.8), as nD is defined over Q, L(nD) has a basis contained in Q(C). In particular, we see that L(D̃) = Q
for any divisor D̃ of degree 1, and that ℓ(D) = 2, ℓ(2D) = 4, and ℓ(4D) = 8 – the utility of these particular
dimensions will be apparent shortly.

Choose functions w, x ∈ Q(C) such that {1, x} is a basis for L(D) and {1, w, x, x2} is a basis for L(2D).
Then S := {1, x, x2, x3, x4, w, w2, wx,wx2} cannot be a linearly independent subset of L(4D), as the latter
is an 8-dimensional vector space, and S has 9 elements. It follows that there is a linear relation between the
9 elements of S, say of the form

g(w, x) := u0w
2 + u1wx

2 + u2wx+ u3w − (v0x
4 + v1x

3 + v2x
2 + v3x+ v4) = 0

for some constants u0, u1, u2, u3, v0, v1, v2, v3, v4 ∈ Q.
Let us try to simplify this relation to the desired form. As we know that L(D̃) = Q for any divisor D̃ of

degree 1, and x /∈ Q, we see that (divx)|suppD = −D as the divisor of poles of x must have degree 2. First,
we claim that u0 ̸= 0. If u0 = 0, we find that

w =
v0x

4 + v1x
3 + v2x

2 + v3x+ v4
u1x2 + u2x+ u3

,

which either will have poles outside of suppD or will have the incorrect order on suppD, unless u1 = u2 =
u3 = v0 = v1 = 0. However, this contradicts the fact that {1, w, x, x2} forms a basis for L(2D).

Now consider the binary quadratic form

f(X,Y ) :=
v0
u0
X4 +

v1
u0
X3Y +

v2
u0
X2Y 2 +

v3
u0
XY 3 +

v4
u0
Y 4 +

1

4u20
(u1X

2 + u2XY + u3Y
2)2.

If we define z := w + 1
2u0

(u1x
2 + u2x+ u3), it follows from the relation g(w, x) = 0 that z2 = f(x, 1). This

results in a homomorphism of function fields Q(Cf ) = FracQ[x, z]/(z2 − f(x, 1)) → Q(C). To see that this
homomorphism is injective, note that if h(x, z) = 0 for some polynomial h /∈ (z2−f(x, 1)) ⊆ Q[x, z], we may
substitute the relation z2 = f(x, 1) into the equation h(x, z) = 0 to find that z ∈ Q(x). This is impossible
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by the same argument we used to show that u0 ̸= 0. To see that this homomorphism is surjective, note that
x : C → P1 is a function with exactly 2 poles (counting multiplicity), x has degree 2, so that Q(C) is an
extension of Q(x) of degree 2. As Q(Cf ) is already an extension of Q(x) of degree 2, the map Q(C) → Q(Cf )
is an isomorphism.

In conclusion, we find that there is an isomorphism of curves C ∼= Cf defined over Q ([13], Remark II.2.5),
so that we may identify C with the curve in P2 cut out by the equation y2z2 = f(x, y), as desired.

Following [1], let us say that a binary quartic form f ∈ V (Q) is soluble if the curve Cf in P 2 defined by
the equation y2z2 = f(x, y) has a point defined over Q, and that a binary quartic form f ∈ V (Q) is locally
soluble if the curve Cf has a point defined over Qν for all places ν of Q. Combining Corollary 4, Proposition
6, and Theorem 7, we obtain the following result.

Theorem 8. [1, 5, 7, 14] Fix I, J ∈ Q. Then there is a canonical bijection between PGL2Q-orbits of locally
soluble binary quartic forms f ∈ V with I(f) = I and J(f) = J , and elements of the 2-Selmer group
Sel2E/Q for E the elliptic curve over Q defined by the equation Y 2 = X3 − IX/3− J/27.

Proof. By applying Corollary 4, Proposition 6, and Theorem 7, we see that the theorem follows from the
following two facts. First, if (C,φC) is a locally soluble 2-covering of the elliptic curve E with equation
Y 2 = X3−IX/3−J/27, then we claim that C ∼= Cf over Q for some f ∈ V (Q) with invariants I(f) = I and
J(f) = J . By Proposition 6, this follows from the fact that if C is a 2-covering of two elliptic curves E and
E′ defined over Q, then E ∼= E′ over Q. This fact can be justified as follows. If (C,φC) is a 2-covering of E
and (C,φ′

C) is a 2-covering of E′, we see that (φ′
C ◦ φ−1

C ) ◦ ([2] ◦ φC) = [2] ◦ φ′
C , so that the composition of

the morphism [2] ◦φC : C → E defined over Q with the isomorphism ϕ := φ′
C ◦φ−1

C : E → E′ is a morphism
defined over Q. Checking Galois actions, we see that ϕ : E → E′ is an isomorphism defined over Q.

Second, we claim that for any binary quartic forms f, g ∈ V (Q) with common invariants, that is, I :=
I(f) = I(g) and J := J(f) = J(g), the 2-coverings (Cf , φCf

) and (Cg, φCg ) of the elliptic curve with
equation Y 2 = X3− IX/3−J/27 are isomorphic if and only if f and g are in the same PGL2Q-orbit. First,
if g = Mf for some M =

(
a b
c d

)
∈ PGL2Q (and hence M ∈ SL2Q), the map of function fields Q(Cf ) =

FracQ[x, y]/(y2 − f(x, 1)) → FracQ[x, y]/(y2 − g(x, 1)) = Q(Cg) defined by x 7→ ax+b
cx+d and y 7→ y

(cx+d)2 is an

isomorphism, and by [13], Theorem II.2.4, this isomorphism induces an isomorphism of curves Cf
∼= Cg over

Q. The fact that this isomorphism of curves corresponds to an isomorphism of 2-covering spaces follows from
the PGL2Q-invariance properties of the maps Cf → E and Cg → E, as outlined in [7]. On the other hand, if
(Cf , φCf

) and (Cg, φCg
) are isomorphic 2-coverings of E, following [5], we note that there is an isomorphism

ψ : Cf → Cg defined over Q with the points on Cf with y-coordinate 0 sent to the points on Cg with
y-coordinate 0, by Proposition 6. The corresponding isomorphism of function fields ψ∗ : Q(Cg) → Q(Cf )
has ψ(y) to be a function whose zeros are precisely the zeroes of y. Since the poles of y have double the
order of the poles of x, we deduce that ψ∗(y) = y/h1(x), ψ

∗(y/x) = y/h2(x), and ψ∗(y/x2) = y/h3(x)
for nonzero quadratic polynomials h1, h2, and h3, so that ψ∗ restricts to an automorphism of Q(x). Now
the automorphisms of P1

Q are linear fractional transformations, hence we see that ψ∗(x) = ax+b
cx+d for some

M :=
(
a b
c d

)
∈ PGL2Q. By the construction of h3, we see that h1 is a quadratic polynomial divisible by

(cx+d)2, and hence that f and g are in the same PGL2Q-orbit (as can be seen by comparing invariants).

In order to count binary quartic forms via a method estimating a lattice by a volume, it would be helpful
to make the space of binary quartic forms in question discrete, by for instance restricting to integer binary
quartic forms. We refer the reader to [5] for proofs, but the integral version of Theorem 8 is stated below.

Theorem 9. [1, 5, 7, 14] Fix A,B ∈ Z. Then there is a canonical bijection between PGL2Z-orbits of locally
soluble binary quartic forms f ∈ V (Z) with I(f) = −(24 · 3)I and J(f) = −(26 · 33)J , and elements of the
2-Selmer group Sel2E/Q for E the elliptic curve over Q defined by the equation Y 2 = X3 +AX +B.

4. Counting Binary Quartic Forms.

Recall from Section 3 that there is a bijective correspondence between the elements of the 2-Selmer group of
an elliptic curve E defined by the equation y2 = x3 + Ax + B with A,B ∈ Z, and PGL2Z-orbits of binary
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quartic forms f ∈ V (Z) with invariants I(f) = −3A and J(f) = −27B. Then one of the key ingredients in
the proof of Theorem 1 is the following result on counting binary quartic forms satisfying a finite number
of congruence conditions whose invariants (I, J) have bounded height. To determine the average size of the
2-Selmer group, Bhargava and Shankar [1] use this theorem, and perform a sieve to account for the infinitely
many congruence conditions that arise from local solubility of the binary quartic forms to be counted.

Theorem 10. [1] (Bhargava, Shankar, 2015) Let X > 0 and let H(I, J) := max{|I|3, J2/4} (note that this
is 27/4 times the height of the corresponding elliptic curve as defined in Theorem 1). For i ∈ {0, 1, 2+, 2−},
let V (i)(Z) be the set of irreducible binary quartic forms f ∈ V (Z) with exactly 2i complex roots (which is
positive definite for i = 2+ and is negative definite for i = 2−). In addition, let S ⊆ V (Z) be a set defined
by a finite set of congruence conditions with p-adic volume µp(S) for each prime p, and let

N (V (i)(Z) ∩ S,X) := |{f ∈ V (i)(Z) ∩ S | H(I(f), J(f)) ≤ X}|.

Then

N (V (i)(Z) ∩ S,X) = Ciζ(2)

 ∏
p prime

µp(S)

X5/6 +O(X3/4+ε)

as X → ∞ for any ε > 0, where

Ci =

{
4/135 i = 0, 2+, 2−
32/135 i = 1 .

The proof [1] of this theorem involves several steps. First, one splits the theorem into computing the
volume of the space of orbits of {f ∈ V (i)(R) | H(I(f), J(f)) ≤ X} under the action of PGL2Z by using an
appropriate fundamental domain, and using the volume of this region to estimate the number of irreducible
lattice points contained in the region. The latter problem is subdivided into further steps – first applying
Davenport’s Lemma [10] to an appropriate subset of the fundamental domain (avoiding cusps), and then
estimating the number of reducible binary quartic forms in V (i)(Z) ∩ S and the number of binary quartic
forms in V (i)(Z) ∩ S with large PGL2Z-stabilizer, in order to compute the error term.

Lemma 11. [1] For any X > 0, defined V (i)(R, X) := {f ∈ V (i)(R) | H(I(f), J(f)) ≤ X}. Then the volume
Vol PGL2Z\V (i)(R, X) of the set of PGL2Z-orbits of real binary quartic forms with height at most X is
4ζ(2)
135 X

5/6 if i = 0, 2+, or 2−, and is 32ζ(2)
135 X5/6 if i = 1.

Proof. We follow the proof in [1]. For simplicity, we will just consider the case i = 0, the results for other
values of i can be obtained by similar methods. We will compute this volume by taking a fundamental
domain for the action of PGL2R on V (i)(R). We will choose a fundamental domain for this action which
contains one form in V (0)(R) with invariants I and J for each choice of (I, J) with H(I, J) = 1 and I = 1;
in particular, we will let

R := {fc,j := c(x3y − xy3/3− jy4/27) | j ∈ (−2, 2), c > 0} ⊆ V (0)(R).

This set R is a fundamental domain as every polynomial f ∈ V (0)(R) satisfies the relation ∆(f) :=
1
27 (4I(f)

3 − J(f)2) > 0, and for every pair (I, J) of invariants with this property, there is exactly one

PGL2R-orbit of V (0)(R) with invariants I and J (see Cremona [8]).
As I(fc,j) = c2 and J(fc,j) = c3j, we see that for any fundamental domain ϕ : PGL2R → R≥0 for the

action on PGL2R by PGL2Z,

Vol PGL2Z\V (0)(R, X) =

∫
PGL2 R

∫
R

1

StabPGL2 R fc,j
ϕ(g) · 1c<X1/6(fc,j)d(gfc,j).

We will now use the result ([1], Proposition 2.8) that the Jacobian of the change-of-basis transformation
sending d(gfc,j) to dgdIdJ is 1/27, and the result due to Cremona and Fisher [9] that the stabilizer of any
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element of V (0)(R) under the action of PGL2R has size 4. This implies that

Vol PGL2Z\V (0)(R, X) =
1

108
(Vol PGL2Z\PGL2R)

∫
0<I<X1/3

0≤|J|<2I3/2

dIdJ =
1

108
· 2ζ(2) · 8

5
X5/6,

as desired.

Now, we outline how to approximate the number of orbits of integer binary quartic forms by this volume,
as done by Bhargava and Shankar [1]. By Davenport’s Lemma [10], we can estimate N (V (i)(Z), X) by the
volume computed in Lemma 11, but with error term given by the maximum volume of a projection to a
4-dimensional subspace of V (R) of a fundamental domain for the action of PGL2Z on V (i)(R, X).

Some of the technicalities are as follows. To remove problems in counting points on the cusps (and
to only need to compute 5-dimensional volumes), we will average over an appropriately chosen compact set
K ⊆ PGL2R. Then we use a bounded fundamental domain Ω for the action of PGL2Z on PGL2R associated
to the Iwasawa decomposition, and count using Davenport’s Lemma the number of points in V (0)(Z) that are
contained within the product of a given translate of the compact set K with the set of binary quartic forms
in R with height bounded by X. The conditions in Davenport’s Lemma turn out to give a error bound of
order Oε(X

3/4+ε) for any ε > 0, after integrating over all translates of K (which corresponds to an integral
over the fundamental domain Ω); see [1] for details. Via working with the explicit fundamental domain Ω,
Bhargava and Shankar [1] prove that the volume of the space of orbits of reducible binary quartic forms
has order O(X2/3) < O(X3/4) (in [1], Lemma 2.3), so that this volume is insignificant. To add congruence
conditions modulo q (with k allowable congruence classes) for some q, we simply scale the problem by q and
sum over k translates. Combining these methods, Theorem 10 follows.
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